Evaluate the line integral, where C is the given curve.

1) $\int_{C} y d s, \quad C: x=t^{2}, y=t, 0 \leq t \leq 2$
2) $\int_{C} x y^{4} d s, \quad C$ is the right half of the circle $x^{2}+y^{2}=16$
3) $\int_{C} x e^{y z} d s, C$ is the line segment from $(0,0,0)$ to $(1,2,3)$.
4) $\int_{C} x y d x+(x-y) d y, C$ consist of the line segments from $(0,0)$ to $(2,0)$ and from $(2,0)$ to $(3,2)$.
5) $\int_{C} x^{2} d x+y^{2} d y+z^{2} d z, C$ consist of the line segments from $(0,0,0)$ to $(1,2,-1)$ and from $(1,2,-1)$ to $(3,2,0)$.

Evaluate the line integral $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}$, where C is given by the vector function $\overrightarrow{\mathbf{r}}(t)$.
6) $\quad \overrightarrow{\mathbf{F}}(x, y)=x^{2} y^{3} \mathbf{i}-y \sqrt{x} \mathbf{j}, \quad \overrightarrow{\mathbf{r}}(t)=t^{2} \mathbf{i}-t^{3} \mathbf{j}, \quad 0 \leq t \leq 1$
7) $\overrightarrow{\mathbf{F}}(x, y, z)=z \mathbf{i}+y \mathbf{j}-x \mathbf{k}, \quad \overrightarrow{\mathbf{r}}(t)=t \mathbf{i}+\sin t \mathbf{j}+\cos t \mathbf{k}, \quad 0 \leq t \leq \pi$
8) Find the work done by the force field $\overrightarrow{\mathbf{F}}(x, y)=x \mathbf{i}+y \mathbf{j}$ on a particle that moves along the path shown below.

9) Find the work done by the force field $\overrightarrow{\mathbf{F}}(x, y)=\left\langle x^{2}+y, 2 x y\right\rangle$ on a particle that moves along the circle centered at the origin with radius 2 oriented counterclockwise beginning at $(2,0)$ and completing one cycle around the circle.

