Evaluate the line integral, where C is the given curve.

1)
$$\int_{C} y \, ds$$
, $C: x = t^2$, $y = t$, $0 \le t \le 2$

2) $\int_C xy^4 ds$, *C* is the right half of the circle $x^2 + y^2 = 16$.

3) $\int_{C} xe^{yz} ds$, *C* is the line segment from (0, 0, 0) to (1, 2, 3).

4) $\int_C xy \, dx + (x - y) \, dy$, C consist of the line segments from (0, 0) to (2, 0) and from (2, 0) to (3, 2).

5) $\int_{C} x^2 dx + y^2 dy + z^2 dz$, *C* consist of the line segments from (0, 0, 0) to (1, 2, -1) and from (1, 2, -1) to (3, 2, 0).

Evaluate the line integral $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$, where *C* is given by the vector function $\vec{\mathbf{r}}(t)$.

6) $\vec{\mathbf{F}}(x, y) = x^2 y^3 \mathbf{i} - y \sqrt{x} \mathbf{j}, \quad \vec{\mathbf{r}}(t) = t^2 \mathbf{i} - t^3 \mathbf{j}, \quad 0 \le t \le 1$

7) $\vec{\mathbf{F}}(x, y, z) = z \mathbf{i} + y \mathbf{j} - x \mathbf{k}$, $\vec{\mathbf{r}}(t) = t \mathbf{i} + \sin t \mathbf{j} + \cos t \mathbf{k}$, $0 \le t \le \pi$

8) Find the work done by the force field $\vec{\mathbf{F}}(x, y) = x\mathbf{i} + y\mathbf{j}$ on a particle that moves along the path shown below.

9) Find the work done by the force field $\vec{\mathbf{F}}(x, y) = \langle x^2 + y, 2xy \rangle$ on a particle that moves along the circle centered at the origin with radius 2 oriented counterclockwise beginning at (2, 0) and completing one cycle around the circle.